Files
2025-09-15 00:04:30 -04:00

244 lines
6.6 KiB
Plaintext

(*
PQXDH + Double Ratchet; proving authenticity, secrecy, forward secrecy, and post-quantum forward secrecy
Author: jake ginesin
model assumption #1: same key is used for signing and encryption (i.e. X25519)
model assumption #2: authentication for the first message holds, and is thus omitted from this model. authentication was proved standalone in `pqxdh.pv`
*)
free m1: bitstring [private].
free m2: bitstring [private].
set selFun = Nounifset.
(*
set simpEqAll = false.
set simpEqAll = false.
set redundancyElim = best.
set redundantHypElim = true.
set simplifyProcess = true.
set stopTerm = false.
*)
free c: channel.
free a: channel. (* channel for the attacker *)
free p: channel [private]. (* For the distribution of public keys with integrity and authenticity - verification happens out of band. This is a standard assumption. *)
(* Symmetric key encryption *)
type key.
fun senc(key, bitstring): bitstring.
reduc forall m: bitstring, k: key; sdec(k, senc(k,m)) = m.
(* Asymmetric key encryption *)
type skey.
type pkey.
fun rb(pkey): bitstring [data].
fun pk(skey): pkey.
(* Digital signatures *)
fun sign(skey, bitstring): bitstring.
fun okay():bitstring.
reduc forall m: bitstring, sk: skey; checksign(pk(sk), m, sign(sk, m)) = okay.
(* MACs *)
fun mac(key, bitstring): bitstring.
reduc forall k: key, m: bitstring; checkmac(k, m, mac(k, m)) = okay.
(* Diffie-Hellman *)
(* DH -> Public^Private *)
fun dh(pkey, skey): key.
equation forall a: skey, b: skey; dh(pk(a), b) = dh(pk(b), a). (* symmetry of DH *)
(* the concat functions *)
fun hkdf1(bitstring): key [data].
fun khash(key): key.
fun hkdf2_dev1(key): key [data].
fun hkdf2_dev2(key): key [data].
letfun hkdf2(k: key) =
(hkdf2_dev1(k), hkdf2_dev2(k)).
fun hkdf4_dev1(key, key): key [data].
fun hkdf4_dev2(key, key): key [data].
letfun hkdf4(k1: key, k2: key) =
(hkdf4_dev1(k1, k2), hkdf4_dev2(k1, k2)).
(* KEM encapsulation *)
type kempriv.
type kempub.
fun kempk(kempriv):kempub.
fun penc(kempub, bitstring):bitstring.
(* fun pdec(kempriv,bitstring):bitstring. *)
reduc forall sk: kempriv, m:bitstring; pdec(sk, penc(kempk(sk), m)) = m.
letfun kempriv2pub(k:kempriv) = kempk(k).
letfun pqkem_enc(pk:kempub) =
new ss:bitstring;
(penc(pk,ss),ss).
letfun pqkem_dec(sk:kempriv,ct:bitstring) =
pdec(sk,ct).
fun qb(kempub): bitstring [data].
(* the concats *)
fun concat1(bitstring, pkey, pkey, bitstring): bitstring [data].
fun concat2(key, key, key, key, bitstring): bitstring [data].
fun concat3(bitstring, pkey): bitstring [data].
(* events *)
event sendE1(bitstring, key).
event recvE1(bitstring, key).
event sendE2(bitstring, key).
event recvE2(bitstring, key).
event compromiseSKA(skey).
event compromiseSKB(skey).
event breakDH(key, key, key, key).
event masterLeak(key).
event start().
let PeerA(SK_A: skey, PK_A: pkey, PK_B: pkey) =
new ae1: skey;
new ae2: skey;
let gae1 = pk(ae1) in
let gae2 = pk(ae2) in
(* generate amaster and enc msg (PHASE 1) *)
phase 1;
in(c, (gbssig: bitstring, gbs: pkey, gbo: pkey, gpqbo: kempub, gpqbsig: bitstring));
if checksign(PK_B, rb(gbs), gbssig) = okay then
if checksign(PK_B, qb(gpqbo), gpqbsig) = okay then
let (ct: bitstring, ss: bitstring) = pqkem_enc(gpqbo) in
let amaster = hkdf1(concat2(dh(gbs, SK_A), dh(PK_B, ae1), dh(gbs, ae1), dh(gbo, ae1), ss)) in
let (ra1: key, ca1: key) = hkdf2(amaster) in (* derive the root and chain key *)
let mak1 = khash(ca1) in
let (mak1_auth: key, mak1_enc: key) = hkdf2(mak1) in
let x1 = senc(mak1_enc, m1) in
let x1_mac = mac(mak1_auth, concat1(x1, gae1, gae2, ct)) in
event sendE1(m1, mak1);
out(c, (x1, x1_mac, gae1, gae2, ct));
(* second stage *)
phase 2;
in(c, (x2: bitstring, x2_mac: bitstring, gtb2: pkey));
let (ra2: key, ca2: key) = hkdf4(ra1, dh(gtb2, ae1)) in
let mak2 = khash(ca2) in
let (mak2_auth: key, mak2_enc: key) = hkdf2(mak2) in
if checkmac(mak2_auth, concat3(x2, gtb2), x2_mac) = okay then
let m2 = sdec(mak2_enc, x2) in
event recvE2(m2, mak2);
phase 3;
event compromiseSKA(SK_A);
out(a, SK_A);
phase 4;
event breakDH(dh(gbs, SK_A), dh(PK_B, ae1), dh(gbs, ae1), dh(gbo, ae1));
out(a, (dh(gbs, SK_A), dh(PK_B, ae1), dh(gbs, ae1), dh(gbo, ae1)));
0.
let PeerB(SK_B: skey, PK_B: pkey, PK_A: pkey) =
new bo: skey;
new bs: skey;
new pqbo: kempriv;
let gbs = pk(bs) in
let gbo = pk(bo) in
let gpqbo = kempk(pqbo) in
let gbssig = sign(SK_B, rb(gbs)) in
let gpqbsig = sign(SK_B, qb(gpqbo)) in
out(c, (gbssig, gbs, gbo, gpqbo, gpqbsig));
phase 1; (* peer B commits first *)
(* first stage: derive bmaster, verfiy a's msgs, decrypt prekey message, reply *)
in(c, (x1: bitstring, x1_mac: bitstring, gae1: pkey, gae2: pkey, ct: bitstring));
let ss = pqkem_dec(pqbo, ct) in
let bmaster = hkdf1(concat2(dh(PK_A, bs), dh(gae1, SK_B), dh(gae1, bs), dh(gae1, bo), ss)) in
let (rb1: key, cb1: key) = hkdf2(bmaster) in (* derive the root and chain key *)
let mbk1 = khash(cb1) in
let (mbk1_auth: key, mbk1_enc: key) = hkdf2(mbk1) in
if checkmac(mbk1_auth, concat1(x1, gae1, gae2, ct), x1_mac) = okay then
let m1 = sdec(mbk1_enc, x1) in
event recvE1(m1, mbk1);
(* second stage *)
phase 2;
new tb2: skey;
let gtb2 = pk(tb2) in
let (rb2: key, cb2: key) = hkdf4(rb1, dh(gae2, tb2)) in
let mbk2 = khash(cb2) in
let (mbk2_auth: key, mbk2_enc: key) = hkdf2(mbk2) in
let x2 = senc(mbk2_enc, m2) in
let x2_mac = mac(mbk2_auth, concat3(x2, gtb2)) in
event sendE2(m2, mbk2);
out(c, (x2, x2_mac, gtb2));
phase 3;
event compromiseSKB(SK_B);
out(a, SK_B);
0.
query event(start()). (* reachable from all possible executions *)
(* forward secrecy *)
query sk1: skey, sk2: skey; (event(compromiseSKA(sk1)) && event(compromiseSKA(sk2)) && attacker(m1)) ==> false.
(* secrecy *)
query attacker(m1).
query attacker(m2).
(* forward pq secrecy *)
query k1: key, k2: key, k3: key, k4: key; (event(breakDH(k1, k2, k3, k4)) && attacker(m1)) ==> false.
(* auth *)
(* query m: bitstring, rk: key; event(recvE1(m, rk)) ==> event(sendE1(m, rk)). *)
query m: bitstring, rk: key; inj-event(recvE2(m, rk)) ==> inj-event(sendE2(m, rk)).
(* reachability *)
query m: bitstring, rk: key; event(recvE1(m, rk)). (* reachable from all executions *)
query m: bitstring, rk: key; event(recvE2(m, rk)). (* reachable from all executions *)
query m: bitstring, rk: key; event(sendE1(m, rk)). (* reachable from all executions *)
query m: bitstring, rk: key; event(sendE2(m, rk)). (* rechable from all executions *)
process
new SK_A: skey; let PK_A = pk(SK_A) in
new SK_B: skey; let PK_B = pk(SK_B) in
out(a, PK_A);
out(a, PK_B);
event start();
( (PeerA(SK_A, PK_A, PK_B)) |
(PeerB(SK_B, PK_B, PK_A)))