214 lines
5.6 KiB
Plaintext
214 lines
5.6 KiB
Plaintext
(*
|
|
PQXDH + Double Ratchet; proving no offline deniability for the responder
|
|
Author: jake ginesin
|
|
|
|
model assumption #1: same key is used for signing and encryption (i.e. X25519)
|
|
model assumption #2: authentication for the first message holds, and is thus omitted from this model. authentication was proved standalone in `pqxdh.pv`
|
|
*)
|
|
|
|
free m1: bitstring [private].
|
|
free m2: bitstring [private].
|
|
|
|
set attacker = passive.
|
|
set selFun = Nounifset.
|
|
set simplifyProcess = false.
|
|
(*
|
|
set simpEqAll = false.
|
|
set simpEqAll = false.
|
|
set redundancyElim = best.
|
|
set redundantHypElim = true.
|
|
set simplifyProcess = true.
|
|
set stopTerm = false.
|
|
*)
|
|
|
|
free c: channel.
|
|
free a: channel. (* channel for the attacker *)
|
|
free p: channel [private]. (* For the distribution of public keys with integrity and authenticity - verification happens out of band. This is a standard assumption. *)
|
|
|
|
(* Symmetric key encryption *)
|
|
|
|
type key.
|
|
|
|
fun senc(key, bitstring): bitstring.
|
|
reduc forall m: bitstring, k: key; sdec(k, senc(k,m)) = m.
|
|
|
|
(* Asymmetric key encryption *)
|
|
|
|
type skey.
|
|
type pkey.
|
|
|
|
fun rb(pkey): bitstring [data].
|
|
fun pk(skey): pkey.
|
|
|
|
(* Digital signatures *)
|
|
|
|
fun sign(skey, bitstring): bitstring.
|
|
fun okay():bitstring.
|
|
reduc forall m: bitstring, sk: skey; checksign(pk(sk), m, sign(sk, m)) = okay.
|
|
|
|
(* MACs *)
|
|
fun mac(key, bitstring): bitstring.
|
|
reduc forall k: key, m: bitstring; checkmac(k, m, mac(k, m)) = okay.
|
|
|
|
(* Diffie-Hellman *)
|
|
(* DH -> Public^Private *)
|
|
|
|
fun dh(pkey, skey): key.
|
|
equation forall a: skey, b: skey; dh(pk(a), b) = dh(pk(b), a). (* symmetry of DH *)
|
|
|
|
(* the concat functions *)
|
|
fun hkdf1(bitstring): key [data].
|
|
|
|
fun khash(key): key.
|
|
|
|
fun hkdf2_dev1(key): key [data].
|
|
fun hkdf2_dev2(key): key [data].
|
|
letfun hkdf2(k: key) =
|
|
(hkdf2_dev1(k), hkdf2_dev2(k)).
|
|
|
|
|
|
fun hkdf4_dev1(key, key): key [data].
|
|
fun hkdf4_dev2(key, key): key [data].
|
|
letfun hkdf4(k1: key, k2: key) =
|
|
(hkdf4_dev1(k1, k2), hkdf4_dev2(k1, k2)).
|
|
|
|
(* KEM encapsulation *)
|
|
type kempriv.
|
|
type kempub.
|
|
|
|
fun kempk(kempriv):kempub.
|
|
fun penc(kempub, bitstring):bitstring.
|
|
(* fun pdec(kempriv,bitstring):bitstring. *)
|
|
reduc forall sk: kempriv, m:bitstring; pdec(sk, penc(kempk(sk), m)) = m.
|
|
|
|
letfun kempriv2pub(k:kempriv) = kempk(k).
|
|
|
|
letfun pqkem_enc(pk:kempub) =
|
|
new ss:bitstring;
|
|
(penc(pk,ss),ss).
|
|
|
|
letfun pqkem_dec(sk:kempriv,ct:bitstring) =
|
|
pdec(sk,ct).
|
|
|
|
fun qb(kempub): bitstring [data].
|
|
|
|
(* the concats *)
|
|
|
|
fun concat1(bitstring, pkey, pkey, bitstring): bitstring [data].
|
|
fun concat2(key, key, key, key, bitstring): bitstring [data].
|
|
fun concat3(bitstring, pkey): bitstring [data].
|
|
|
|
(* events *)
|
|
event sendE1(bitstring, key).
|
|
event recvE1(bitstring, key).
|
|
event sendE2(bitstring, key).
|
|
event recvE2(bitstring, key).
|
|
|
|
event compromiseSKA(skey).
|
|
event compromiseSKB(skey).
|
|
event breakDH(key, key, key, key).
|
|
event masterLeak(key).
|
|
|
|
event start().
|
|
|
|
let PeerA(SK_A: skey, PK_A: pkey, PK_B: pkey) =
|
|
|
|
new ae1: skey;
|
|
new ae2: skey;
|
|
let gae1 = pk(ae1) in
|
|
let gae2 = pk(ae2) in
|
|
|
|
(* generate amaster and enc msg (PHASE 1) *)
|
|
phase 1;
|
|
|
|
in(c, (gbssig: bitstring, gbs: pkey, gbo: pkey, gpqbo: kempub, gpqbsig: bitstring));
|
|
if checksign(PK_B, rb(gbs), gbssig) = okay then
|
|
if checksign(PK_B, qb(gpqbo), gpqbsig) = okay then
|
|
let (ct: bitstring, ss: bitstring) = pqkem_enc(gpqbo) in
|
|
|
|
let amaster = hkdf1(concat2(dh(gbs, SK_A), dh(PK_B, ae1), dh(gbs, ae1), dh(gbo, ae1), ss)) in
|
|
let (ra1: key, ca1: key) = hkdf2(amaster) in (* derive the root and chain key *)
|
|
|
|
let mak1 = khash(ca1) in
|
|
let (mak1_auth: key, mak1_enc: key) = hkdf2(mak1) in
|
|
|
|
let x1 = senc(mak1_enc, m1) in
|
|
let x1_mac = mac(mak1_auth, concat1(x1, gae1, gae2, ct)) in
|
|
event sendE1(m1, mak1);
|
|
|
|
out(c, (x1, x1_mac, gae1, gae2, ct));
|
|
|
|
(* second stage *)
|
|
|
|
in(c, (x2: bitstring, x2_mac: bitstring, gtb2: pkey));
|
|
|
|
let (ra2: key, ca2: key) = hkdf4(ra1, dh(gtb2, ae1)) in
|
|
let mak2 = khash(ca2) in
|
|
let (mak2_auth: key, mak2_enc: key) = hkdf2(mak2) in
|
|
|
|
if checkmac(mak2_auth, concat3(x2, gtb2), x2_mac) = okay then
|
|
let m2 = sdec(mak2_enc, x2) in
|
|
event recvE2(m2, mak2);
|
|
|
|
0.
|
|
|
|
let PeerB(SK_B: skey, PK_B: pkey, PK_A: pkey) =
|
|
new bo: skey;
|
|
new bs: skey;
|
|
new pqbo: kempriv;
|
|
|
|
let gbs = pk(bs) in
|
|
let gbo = pk(bo) in
|
|
let gpqbo = kempk(pqbo) in
|
|
let gbssig = sign(SK_B, rb(gbs)) in
|
|
let gpqbsig = sign(SK_B, qb(gpqbo)) in
|
|
out(c, (gbssig, gbs, gbo, gpqbo, gpqbsig));
|
|
phase 1; (* peer B commits first *)
|
|
|
|
(* first stage: derive bmaster, verfiy a's msgs, decrypt prekey message, reply *)
|
|
|
|
in(c, (x1: bitstring, x1_mac: bitstring, gae1: pkey, gae2: pkey, ct: bitstring));
|
|
let ss = pqkem_dec(pqbo, ct) in
|
|
|
|
let bmaster = hkdf1(concat2(dh(PK_A, bs), dh(gae1, SK_B), dh(gae1, bs), dh(gae1, bo), ss)) in
|
|
let (rb1: key, cb1: key) = hkdf2(bmaster) in (* derive the root and chain key *)
|
|
|
|
let mbk1 = khash(cb1) in
|
|
let (mbk1_auth: key, mbk1_enc: key) = hkdf2(mbk1) in
|
|
if checkmac(mbk1_auth, concat1(x1, gae1, gae2, ct), x1_mac) = okay then
|
|
let m1 = sdec(mbk1_enc, x1) in
|
|
event recvE1(m1, mbk1);
|
|
|
|
(* second stage *)
|
|
|
|
new tb2: skey;
|
|
let gtb2 = pk(tb2) in
|
|
|
|
let (rb2: key, cb2: key) = hkdf4(rb1, dh(gae2, tb2)) in
|
|
let mbk2 = khash(cb2) in
|
|
let (mbk2_auth: key, mbk2_enc: key) = hkdf2(mbk2) in
|
|
|
|
let x2 = senc(mbk2_enc, m2) in
|
|
let x2_mac = mac(mbk2_auth, concat3(x2, gtb2)) in
|
|
event sendE2(m2, mbk2);
|
|
|
|
out(c, (x2, x2_mac, gtb2));
|
|
|
|
0.
|
|
|
|
process
|
|
new SK_A: skey; let PK_A = pk(SK_A) in
|
|
new SK_B: skey; let PK_B = pk(SK_B) in
|
|
out(a, PK_A);
|
|
out(a, PK_B);
|
|
|
|
new fib1: skey;
|
|
new fib2: skey;
|
|
let k_A = choice [ SK_A, fib1 ] in
|
|
let k_B = choice [ SK_B, fib2 ] in
|
|
|
|
event start();
|
|
( (PeerA(SK_B, PK_A, pk(k_B))) |
|
|
(PeerB(k_B, pk(k_B), PK_A)) |
|
|
out(a, m1))
|