(* Olm 3DH+Double Ratchet without olm signing; Author: [redacted] *) free m1: bitstring [private]. free m2: bitstring [private]. set simpEqAll = false. set selFun = Nounifset. set redundancyElim = best. set redundantHypElim = true. set simplifyProcess = true. set stopTerm = false. free c: channel. free a: channel. (* channel for the attacker *) free p: channel [private]. (* For the distribution of public keys with integrity and authenticity - verification happens out of band. This is a standard assumption. *) (* Symmetric key encryption *) type key. fun senc(key, bitstring): bitstring. reduc forall m: bitstring, k: key; sdec(k, senc(k,m)) = m. (* Asymmetric keys *) type skey. type pkey. fun rb(pkey): bitstring. fun pk(skey): pkey. (* Digital signatures *) fun sign(skey, bitstring): bitstring. fun okay():bitstring. reduc forall m: bitstring, sk: skey; checksign(pk(sk), m, sign(sk, m)) = okay. (* MACs *) fun mac(key, bitstring): bitstring. reduc forall k: key, m: bitstring; checkmac(k, m, mac(k, m)) = okay. (* Diffie-Hellman *) (* DH -> Public^Private *) fun dh(pkey, skey): key. equation forall a: skey, b: skey; dh(pk(a), b) = dh(pk(b), a). (* symmetry of DH *) (* the concat functions *) fun hkdf1(key, key, key): key [data]. fun khash(key): key. fun hkdf2_dev1(key): key. fun hkdf2_dev2(key): key. letfun hkdf2(k: key) = (hkdf2_dev1(k), hkdf2_dev2(k)). fun hkdf3_dev1(key, bitstring): key. fun hkdf3_dev2(key, bitstring): key. letfun hkdf3(k: key, b: bitstring) = (hkdf3_dev1(k, b), hkdf3_dev2(k, b)). fun hkdf4_dev1(key, key): key. fun hkdf4_dev2(key, key): key. letfun hkdf4(k1: key, k2: key) = (hkdf4_dev1(k1, k2), hkdf4_dev2(k1, k2)). (* the concats *) fun concat1(bitstring, pkey, pkey): bitstring [data]. fun concat2(bitstring, pkey): bitstring [data]. (* events *) event sendE1(bitstring, key, pkey, pkey). event recvE1(bitstring, key, pkey, pkey). event sendE2(bitstring, key, pkey, pkey). event recvE2(bitstring, key, pkey, pkey). event compromiseSKA(skey). event compromiseSKB(skey). event start(). free tag_oe1: bitstring [private]. free tag_oe2: bitstring [private]. free tag_me1: bitstring [private]. free tag_me2: bitstring [private]. free tag_b_eph: bitstring [private]. let PeerA(SK_A: skey, PK_A: pkey, PK_B: pkey, OLM_KEYS_STR:bitstring, OLM_ROOT_STR: bitstring) = phase 1; new ao: skey; let gao = pk(ao) in (* generate amaster and enc msg (PHASE 1) *) in(c, (gbo: pkey)); let amaster = hkdf1(dh(PK_B, SK_A), dh(gbo, SK_A), dh(PK_B, ao)) in let (ra1: key, ca1: key) = hkdf3(amaster, OLM_ROOT_STR) in (* derive the root and chain key *) new ta1: skey; let gta1 = pk(ta1) in let mak1 = khash(ca1) in let (mak1_auth: key, mak1_enc: key) = hkdf2(mak1) in let x1 = senc(mak1_enc, m1) in let x1_mac = mac(mak1_auth, concat1(x1, gao, gta1)) in event sendE1(m1, mak1, gao, gta1); out(c, (x1, x1_mac, gao, gta1)); (* second stage: now, decrypt the received message from bob *) in(c, (x2: bitstring, x2_mac: bitstring, gtb2: pkey)); let (ra2: key, ca2: key) = hkdf4(ra1, dh(gtb2, ta1)) in let mak2 = khash(ca2) in let (mak2_auth: key, mak2_enc: key) = hkdf2(mak2) in if checkmac(mak2_auth, concat2(x2, gtb2), x2_mac) = okay then ( let m2 = sdec(mak2_enc, x2) in event recvE2(m2, mak2, gta1, gtb2); phase 2 ). let PeerB(SK_B: skey, PK_B: pkey, PK_A: pkey, OLM_KEYS_STR:bitstring, OLM_ROOT_STR: bitstring) = new bo: skey; let gbo = pk(bo) in out(c, (gbo)); phase 1; (* first stage: derive bmaster, verfiy a's msgs, decrypt prekey message, reply *) in(c, (x1: bitstring, x1_mac: bitstring, gao: pkey, gta1: pkey)); let bmaster = hkdf1(dh(PK_A, SK_B), dh(PK_A, bo), dh(gao, SK_B)) in let (rb1: key, cb1: key) = hkdf3(bmaster, OLM_ROOT_STR) in (* derive the root and chain key *) let mbk1 = khash(cb1) in let (mbk1_auth: key, mbk1_enc: key) = hkdf2(mbk1) in if checkmac(mbk1_auth, concat1(x1, gao, gta1), x1_mac) = okay then ( let m1 = sdec(mbk1_enc, x1) in event recvE1(m1, mbk1, gao, gta1); new tb2: skey; let gtb2 = pk(tb2) in let (rb2: key, cb2: key) = hkdf4(rb1, dh(gta1, tb2)) in let mbk2 = khash(cb2) in let (mbk2_auth: key, mbk2_enc: key) = hkdf2(mbk2) in let x2 = senc(mbk2_enc, m2) in let x2_mac = mac(mbk2_auth, concat2(x2, gtb2)) in event sendE2(m2, mbk2, gta1, gtb2); out(c, (x2, x2_mac, gtb2)); phase 2; event compromiseSKB(SK_B); out(c, SK_B) ). query event(start()). (* reachable from all possible executions *) (* pre-compromise security, aka forward secrecy. the only way m1 can be compromised is if alice's sk is compromised NOTE: if signed, this is trivially true since m1 is never compromised *) query sk: skey; attacker(m1) ==> event(compromiseSKB(sk)). (* post-compromise security. even if the secret key is compromised, message two remains secret *) query sk: skey; (event(compromiseSKB(sk)) && attacker(m2)) ==> false. (* auth *) query m: bitstring, rk: key, k1: pkey, k2: pkey; inj-event(recvE1(m, rk, k1, k2)) ==> inj-event(sendE1(m, rk, k1, k2)). query m: bitstring, rk: key, k1: pkey, k2: pkey, k3: pkey, k4: pkey; inj-event(recvE2(m, rk, k1, k2)) ==> inj-event(sendE2(m, rk, k1, k2)). (* secrecy *) query attacker(m1). query attacker(m2). (* reachability *) query m: bitstring, rk: key, k1: pkey, k2: pkey; event(recvE1(m, rk, k1, k2)). (* reachable from all executions *) query m: bitstring, rk: key, k1: pkey, k2: pkey; event(recvE2(m, rk, k1, k2)). (* reachable from all executions *) query m: bitstring, rk: key, k1: pkey, k2: pkey; event(sendE1(m, rk, k1, k2)). (* reachable from all executions *) query m: bitstring, rk: key, k1: pkey, k2: pkey; event(sendE2(m, rk, k1, k2)). (* rechable from all executions *) process new OLM_KEYS_STR:bitstring; out(a, OLM_KEYS_STR); new OLM_ROOT_STR:bitstring; out(a, OLM_ROOT_STR); new SK_A: skey; let PK_A = pk(SK_A) in new SK_B: skey; let PK_B = pk(SK_B) in out(a, PK_A); out(a, PK_B); event start(); ( (!PeerA(SK_A, PK_A, PK_B, OLM_KEYS_STR, OLM_ROOT_STR)) | (!PeerB(SK_B, PK_B, PK_A, OLM_KEYS_STR, OLM_ROOT_STR)))