attack synthesis
This commit is contained in:
@@ -110,6 +110,6 @@ Dropping AppendEntryResponse messages & no \\
|
||||
\end{figure}
|
||||
In our experiments, we found just one attack on our Raft \promela model, violating election safety in particular. In this scenario, peer A and peer B are candidates for election. Peer A receives three votes, one from itself and two from other peers, and Peer B receives two votes, one from itself and one from another peer. The replay attacker simply replays the vote sent to peer B. Then, both Peer A and Peer B are convinced they won the election and change their state to leader. Following this, leader completeness is also naturally violated.
|
||||
|
||||
To be clear, this is not an attack on the general Raft protocol, but rather an attack on our specific Raft implementation: in this case, the bug \korg exploits involves our Raft model not ensuring votes received are from unique peers\footnote{Naturally, this requires cryptography and therefore is challenging to express in the semantics of \promela.}. In general, the complete Raft protocol has been proven to resist drop and replay attackers \cite{Woos_Wilcox_Anton_Tatlock_Ernst_Anderson_2016}. In this scenario, \korg demonstrates its ability to discover subtle bugs in protocol logic ; our Raft model satisfies $\phi_1$-$\phi_5$ assuming perfect channels, and \korg allowed us to reason precisely about the effect of imperfect, vulnerable channels.
|
||||
To be clear, this is not an attack on the general Raft protocol, but rather an attack on our specific Raft implementation: in this case, the bug \korg exploits involves our Raft model not ensuring votes received are from unique peers\footnote{Naturally, this requires cryptography and therefore is challenging to express in the semantics of \promela.}. In general, the complete Raft protocol has been proven to resist drop and replay attackers \cite{Woos_Wilcox_Anton_Tatlock_Ernst_Anderson_2016}. In this scenario, \korg demonstrates its ability to discover subtle bugs in protocol logic; our Raft model satisfies $\phi_1$-$\phi_5$ assuming perfect channels, and \korg allowed us to reason precisely about the effect of imperfect, vulnerable channels.
|
||||
|
||||
% We note our analysis is in no
|
||||
|
||||
Reference in New Issue
Block a user