This commit is contained in:
JakeGinesin
2024-11-18 14:49:59 -05:00
parent 28235ca697
commit 434b12e4e0
5 changed files with 746 additions and 707 deletions

View File

@@ -37,13 +37,19 @@ A transition \( (s, x, s') \in T \) is called an \emph{input transition} if \( x
Given a \ba \( B = (Q, \Sigma, \delta, Q_0, F) \), we construct a corresponding Process \( P = \langle AP, I, O, S, s_0, T, L \rangle \) as follows:
\begin{itemize}
\item {Atomic Propositions: \( AP = \{ \text{accept} \} \), a singleton set containing a special proposition indicating acceptance.
\item Atomic Propositions: \( AP = \{ \text{accept} \} \), a singleton set containing a special proposition indicating acceptance.
\item Inputs and Outputs: \( I = \Sigma \) and \( O = \emptyset \).
\item States: \( S = Q \) and \( s_0 \in Q_0 \).
\item Transition Relation: \( T = \delta \).
\item Labeling Function: \( L: S \to 2^{AP} \) defined by
\[ L(s) = \begin{cases} \{ \text{accept} \} & \text{if } s \in F, \\ \emptyset & \text{otherwise}. \end{cases} \]
\end{itemize}
\[
L(s) =
\begin{cases}
\{ \text{accept} \} & \text{if } s \in F, \\
\emptyset & \text{otherwise}.
\end{cases}
\]
In this mapping, the states and transitions of the BA are preserved in the Process, and the accepting states \( F \) are identified via the labeling function \( L \).